Floquet topological semimetal phases of an extended kicked Harper model.
نویسندگان
چکیده
Recent discoveries on topological characterization of gapless systems have attracted interest in both theoretical studies and experimental realizations. Examples of such gapless topological phases are Weyl semimetals, which exhibit three-dimensional (3D) Dirac cones (Weyl points), and nodal line semimetals, which are characterized by line nodes (two bands touching along a line). Inspired by our previous discoveries that the kicked Harper model exhibits many fascinating features of Floquet topological phases, in this paper we consider a generalization of the model, where two additional periodic system parameters are introduced into the Hamiltonian to serve as artificial dimensions, so as to simulate a 3D periodically driven system. We observe that by increasing the hopping strength and the kicking strength of the system, many new Floquet band touching points at Floquet quasienergies 0 and π will start to appear. Some of them are Weyl points, while the others form line nodes in the parameter space. By taking open boundary conditions along the physical dimension, edge states analogous to Fermi arcs in static Weyl semimetal systems are observed. Finally, by designing an adiabatic pumping scheme, the chirality of the Floquet-band Weyl points and the π Berry phase around Floquet-band line nodes can be manifested.
منابع مشابه
Quantum Chaos and Spectral Transitions in the Kicked Harper Model
In contrast to bounded systems, quantum chaos in extended systems may be associated with fractal spectra, metal-insulator transitions due to avoided band crossings, and spreading wave packets. In this lecture we point out the role of avoided band crossings for spectral transitions in the example of the kicked Harper model. We explain the coexistence of localized and extended eigenfunctions oo t...
متن کاملDimer decimation and intricately nested localized-ballistic phases of a kicked Harper model.
A new decimation scheme is introduced to study localization transitions in tight binding models with long range interaction. Within this scheme, the lattice models are mapped to a vectorized dimer where an asymptotic dissociation of the dimer is shown to correspond to the vanishing of the transmission coefficient through the system. When applied to the kicked Harper model, the method unveils an...
متن کاملCounter-propagating edge modes and topological phases of a kicked quantum Hall system.
A periodically driven quantum Hall system in a fixed magnetic field is found to exhibit a series of phases featuring anomalous edge modes with the "wrong" chirality. This leads to pairs of counter-propagating chiral edge modes at each edge, in sharp contrast to stationary quantum Hall systems. We show that the pair of Floquet edge modes are protected by the chiral (sublattice) symmetry, and tha...
متن کاملCreating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials
Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulse...
متن کاملTopological singularities and transport in kicked Harper model.
Quasienergy spectrum of kicked Harper model is found to exhibit a series of diabolic crossings. These conical degeneracies reside mostly on the symmetry line of its two-dimensional parameter space and their locations are found to coincide with the local maxima of the kinetic energy of the kicked system. Additionally, there are exceptional point singularities, that are found by analytically cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2016